Pharmacogenetic Application of High-Throughput Mutation Detection and Genotyping Technologies

نویسندگان

  • Michael M. Shi
  • M. Guo
  • S. Chen
  • J. Reiner
  • K. Zhao
چکیده

Pharmacogenetics is a scientific discipline that examines the genetic basis for individual variations in response to therapeutics. Pharmacogenetics promises to develop individualized medicines tailored to patients’ genotypes. However, identifying and genotyping a vast number of genetic polymorphisms in large populations also pose a great challenge. This article will address the recent technology developments in mutation detection and genotyping with a focus on genotyping single nucleotide polymorphisms (SNPs). Large-scale SNP association studies are becoming the method of choice to identify disease and drug response genes. However, the number of samples required by these studies demands a high-throughput genotyping resource. A wide variety of approaches have been developed to genotype SNPs in recent years including PCR and non-PCR based fluorescent genotyping technology, high-density oligonucleotide arrays, and chip-based matrix-assisted laser desorption ionization time-of flight mass spectrometry (MALDI-TOF-MS). With the improvement of these enabling technologies, pharmacogenetics will fundamentally change the practice of medicine by providing physicians with essential information to precisely prescribe the appropriate drug at the correct dose for each patient, and will provide enormous health benefits and cost savings to the public.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies.

BACKGROUND Pharmacogenetics is a scientific discipline that examines the genetic basis for individual variations in response to therapeutics. Pharmacogenetics promises to develop individualized medicines tailored to patients' genotypes. However, identifying and genotyping a vast number of genetic polymorphisms in large populations also pose a great challenge. APPROACH This article reviews the...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP

Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases.Objectives: Development of a new Multiplex Tetra-Primer Amplifi cation Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of...

متن کامل

Implementation and utilization of genetic testing in personalized medicine

Clinical genetic testing began over 30 years ago with the availability of mutation detection for sickle cell disease diagnosis. Since then, the field has dramatically transformed to include gene sequencing, high-throughput targeted genotyping, prenatal mutation detection, preimplantation genetic diagnosis, population-based carrier screening, and now genome-wide analyses using microarrays and ne...

متن کامل

HBB FSC 36-37 (-T) Gene Mutation Detection in Carriers of Thalassemia Minor Using High Resolution Melting Analysis

Beta-thalassemia is one of the most common autosomal recessive disorders in the world population resulting from over 200 different mutations of HBB gene. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the HBB gene leading to reduced (beta+) or absent (beta0) synthesis of the beta chains of hemoglobin (Hb). High-resolution melting of polymerase chain reaction (PCR)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002